博客
关于我
神经网络中的矩阵求导及反向传播推导
阅读量:321 次
发布时间:2019-03-03

本文共 1475 字,大约阅读时间需要 4 分钟。

两层全连接神经网络的实现, 包括网络的实现、梯度的反向传播计算和权重更新过程:

 

# -*- coding: utf-8 -*-import numpy as np# N is batch size; D_in is input dimension;# H is hidden dimension; D_out is output dimension.N, D_in, H, D_out = 64, 1000, 100, 10# Create random input and output datax = np.random.randn(N, D_in)y = np.random.randn(N, D_out)# Randomly initialize weightsw1 = np.random.randn(D_in, H)w2 = np.random.randn(H, D_out)learning_rate = 1e-6for t in range(500):    # Forward pass: compute predicted y    h = x.dot(w1)    h_relu = np.maximum(h, 0)    y_pred = h_relu.dot(w2)    # Compute and print loss    loss = np.square(y_pred - y).sum()    print(t, loss)    # Backprop to compute gradients of w1 and w2 with respect to loss    grad_y_pred = 2.0 * (y_pred - y)    grad_w2 = h_relu.T.dot(grad_y_pred)    grad_h_relu = grad_y_pred.dot(w2.T)    grad_h = grad_h_relu.copy()    grad_h[h < 0] = 0    grad_w1 = x.T.dot(grad_h)    # Update weights    w1 -= learning_rate * grad_w1    w2 -= learning_rate * grad_w2

这里解决了我一个错误的认知:以为最速下降法跟各个变量计算的导数无关, 而其实就是每个变量各自按自己的导数下降就可以实现函数最陡的坡进行下降;在图形上可以理解多个向量合并成一个方向;

反向传播 过程,核心代码如下

h = x.dot(w1)h_relu = np.maximum(h, 0)y_pred = h_relu.dot(w2)loss = np.square(y_pred - y).sum()grad_y_pred = 2.0 * (y_pred - y)    # 64 x 10grad_w2 = h_relu.T.dot(grad_y_pred) # 100 x 10grad_h_relu = grad_y_pred.dot(w2.T) # 64 x 100grad_h = grad_h_relu.copy()         # 64 x 100grad_h[h < 0] = 0                   # 64 x 100grad_w1 = x.T.dot(grad_h)           # 1000 x 100

 

 

 

 

 

问题:如何实现relu求导呢?

转载地址:http://usgm.baihongyu.com/

你可能感兴趣的文章
mysql5.7 for windows_MySQL 5.7 for Windows 解压缩版配置安装
查看>>
Webpack 基本环境搭建
查看>>
mysql5.7 安装版 表不能输入汉字解决方案
查看>>
MySQL5.7.18主从复制搭建(一主一从)
查看>>
MySQL5.7.19-win64安装启动
查看>>
mysql5.7.19安装图解_mysql5.7.19 winx64解压缩版安装配置教程
查看>>
MySQL5.7.37windows解压版的安装使用
查看>>
mysql5.7免费下载地址
查看>>
mysql5.7命令总结
查看>>
mysql5.7安装
查看>>
mysql5.7性能调优my.ini
查看>>
MySQL5.7新增Performance Schema表
查看>>
Mysql5.7深入学习 1.MySQL 5.7 中的新增功能
查看>>
Webpack 之 basic chunk graph
查看>>
Mysql5.7版本单机版my.cnf配置文件
查看>>
mysql5.7的安装和Navicat的安装
查看>>
mysql5.7示例数据库_Linux MySQL5.7多实例数据库配置
查看>>
Mysql8 数据库安装及主从配置 | Spring Cloud 2
查看>>
mysql8 配置文件配置group 问题 sql语句group不能使用报错解决 mysql8.X版本的my.cnf配置文件 my.cnf文件 能够使用的my.cnf配置文件
查看>>
MySQL8.0.29启动报错Different lower_case_table_names settings for server (‘0‘) and data dictionary (‘1‘)
查看>>