博客
关于我
神经网络中的矩阵求导及反向传播推导
阅读量:321 次
发布时间:2019-03-03

本文共 1475 字,大约阅读时间需要 4 分钟。

两层全连接神经网络的实现, 包括网络的实现、梯度的反向传播计算和权重更新过程:

 

# -*- coding: utf-8 -*-import numpy as np# N is batch size; D_in is input dimension;# H is hidden dimension; D_out is output dimension.N, D_in, H, D_out = 64, 1000, 100, 10# Create random input and output datax = np.random.randn(N, D_in)y = np.random.randn(N, D_out)# Randomly initialize weightsw1 = np.random.randn(D_in, H)w2 = np.random.randn(H, D_out)learning_rate = 1e-6for t in range(500):    # Forward pass: compute predicted y    h = x.dot(w1)    h_relu = np.maximum(h, 0)    y_pred = h_relu.dot(w2)    # Compute and print loss    loss = np.square(y_pred - y).sum()    print(t, loss)    # Backprop to compute gradients of w1 and w2 with respect to loss    grad_y_pred = 2.0 * (y_pred - y)    grad_w2 = h_relu.T.dot(grad_y_pred)    grad_h_relu = grad_y_pred.dot(w2.T)    grad_h = grad_h_relu.copy()    grad_h[h < 0] = 0    grad_w1 = x.T.dot(grad_h)    # Update weights    w1 -= learning_rate * grad_w1    w2 -= learning_rate * grad_w2

这里解决了我一个错误的认知:以为最速下降法跟各个变量计算的导数无关, 而其实就是每个变量各自按自己的导数下降就可以实现函数最陡的坡进行下降;在图形上可以理解多个向量合并成一个方向;

反向传播 过程,核心代码如下

h = x.dot(w1)h_relu = np.maximum(h, 0)y_pred = h_relu.dot(w2)loss = np.square(y_pred - y).sum()grad_y_pred = 2.0 * (y_pred - y)    # 64 x 10grad_w2 = h_relu.T.dot(grad_y_pred) # 100 x 10grad_h_relu = grad_y_pred.dot(w2.T) # 64 x 100grad_h = grad_h_relu.copy()         # 64 x 100grad_h[h < 0] = 0                   # 64 x 100grad_w1 = x.T.dot(grad_h)           # 1000 x 100

 

 

 

 

 

问题:如何实现relu求导呢?

转载地址:http://usgm.baihongyu.com/

你可能感兴趣的文章
mysql互换表中两列数据方法
查看>>
mysql五补充部分:SQL逻辑查询语句执行顺序
查看>>
mysql交互式连接&非交互式连接
查看>>
MySQL什么情况下会导致索引失效
查看>>
Mysql什么时候建索引
查看>>
MySql从入门到精通
查看>>
MYSQL从入门到精通(一)
查看>>
MYSQL从入门到精通(二)
查看>>
mysql以下日期函数正确的_mysql 日期函数
查看>>
mysql以服务方式运行
查看>>
mysql优化--索引原理
查看>>
MySQL优化之BTree索引使用规则
查看>>
MySQL优化之推荐使用规范
查看>>
Webpack Critical CSS 提取与内联教程
查看>>
mysql优化概述(范式.索引.定位慢查询)
查看>>
MySQL优化的一些需要注意的地方
查看>>
mysql优化相关
查看>>
MySql优化系列-优化版造数据(存储过程+函数+修改存储引擎)-2
查看>>
MySql优化系列-进阶版造数据(load data statment)-3
查看>>
MySql优化系列-造数据(存储过程+函数)-1
查看>>